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Challenges of Heterogeneous Many-Core

* MPl-only not enough
— Need to port: it doesn’t work for accelerators.
— Inefficient: it misses a lot of shared-memory benefits.

* MPI+ can entail significant work

— We want to minimize the number of code bases.
— We want to minimize the effort to add a new code base.

* Programming language issues
— Many APIs require a particular language.
— Developers resent being told what language to use.

* Lib/User interface issues
— Extending the library should not introduce serial bottlenecks.
— Shouldn’t require users to be shared-memory API experts.



Algorithm R&D Directions

* Current focus on MPI+X, where X is any/all
reasonable industry standard.

— Distributed memories = distributed memory programming
* New efforts on efficient kernels and problem setup
* Support for embedded UQ and optimization

* Krylov solvers for emerging problems (e.g., UQ):

— Interacting subspace methods for simultaneous/sequenced
systems (incl. block and recycling methods)

— Communication avoiding methods for single RHS systems
— Numerically fault-resilient solvers, e.g., FT-GMRES

 Mixed/multi-precision solvers and preconditioners



Software R&D Directions

» Templated C++ code
— Templating data allows more efficient use of cache and bandwidth.
— Templating data expands capability (e.g., integer limit, comp1ex)

 Generic shared memory parallel node
— Template metaprogramming shared memory parallel node API
— Static translation layer to, e.g., TBB, Thrust, OpenMP

* Hybrid programming model
— Hybrid programming skeletons to support most common patterns
— Expose models for high-productivity, performance-portable apps

 Non-intrusive modification of structures and algorithms
— Expose the shared-memory parallel node API to apps
— Static polymorphism to support node-optimized kernels



Example: A Benefit of Generic Kernels

- Tpetra distributed linear algebra library provides a set of

methods for executing user kernels on vectors, e.g.:

— unary transform<UOP>(Vector &v, UOP op)
— binary transform<BOP>(Vector &vl, const Vector &v2, EBOP op)
— reduce<G>(const Vector &vl, const Vector &v2, G op glob)

* Fine level for expressiveness, coarser levels for convenience.

// single-prec dot() with double-prec accumulator via custom kernel
result = reduce( *x, *y, myDotProductKernel<float,double>() )

// Or a composite adaptor and STL functors

result = reduce( *x, *y, reductionGlob<ZeroOp<double>> (
std: :multiplies<float>(),
std: :plus<double>()) )

// Or using inline functors via C++11 lambda functions

result = reduce( *x, *y, reductionGlob<ZeroOp<double>> (
[] (float x, float y) {return x*y;} ,
[] (double a, double b) {return a+b;} );

// Or using a convenience macro to generate all of that
result = REDUCE2( x, y, x*y, ZeroOp<float>, std::plus<double>() )




Example: Inline, Templated MPI+ CG

* The API supports rapid prototyping of algorithms
— Fun game: Find the MPI or threading!

for (k=0; k<numIters; ++k) {

A->apply( *p, *Ap ); // Ap = A*p
S pAp = REDUCEZ (
P’ Ap’
p*Ap, ZeroOp<S>, plus<S>() ) // p'*Ap
const S alpha = rr / pAp; // alpha = r’*r/p’*Ap
BINARY TRANSFORM( x, p,
x + alpha*p ); // x = x + alpha*p

S rrold = rr;

rr = BINARY_PRETRANSFORM_REDUCE(
r, Ap, S/ I
r - alpha*Ap, .\ // r - alpha*Ap |
r*r, ZeroOp<S>, plus<S>() ); i// sum r'*r :

______________________

BINARY TRANSFORM( p, r,

r + beta*p); // P z + beta*p

const S beta = rr / rrold; // beta = r’*r/old(r’*r)




Example: Recursive Multi-Prec. FPCG

for (k=0; k<numIters; ++k) {

A->apply (*p, *Ap) ; // Ap = A*p
T pAp = REDUCE2( p, Ap,
p*Ap, ZeroOp<T>, plus<T>()); // p'*Ap
const T alpha = zr / pAp;
BINARY TRANSFORM( x, P, x + alpha*p ); // x = x + alpha*p
BINARY TRANSFORM( rold, r, r); // rold = r
T rr =_BINARY_PRETRANSFORM_REDUCE( _____________________
r, Ap, . // fused: i
r - alpha*Ap, i// r - alpha*Ap :

r*r, ZeroOp<T>, plus<T>() ); '// sum r'*r

auto plusTT = make pair op<T,T>(plus<T>());

pair<T,T> both = REDUCE3( z, r, rold,
make pair( z*r, z*rold ),
ZeroPTT, plusTT );
const T beta = (both.first - both.second) / zr;
zr = both.first;
BINARY TRANSFORM( p, z, z + beta*p ); // p = z + beta*p

}




Example: Simple CG
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Example: Recursive Multi-Prec. FPCG

* Problem: Oberwolfach/gyro, N=17K, NNZ=1M

- Single solver code-base, templated on qd_realldd realldouble

TBBNode initializing with numThreads ==
TBBNode initializing with numThreads ==
Running test with Node==Kokkos: : TBBNode
Beginning recursiveFPCG<qd real>
Beginning recursiveFPCG<dd real>
|res|/|res 0]: 1.269903e-14
|res|/|res 0]|: 3.196573e-24
|res|/|res 0]|: 6.208795e-35
Convergence detected!
Leaving recursiveFPCG<dd real> after
|res|/|res 0]|: 2.704682e-32
Beginning recursiveFPCG<dd real>
|res|/|res 0]|: 4.531185e-09
|res|/|res 0|: 6.341084e-20
|res|/|res 0|: 8.326745e-31
Convergence detected!
Leaving recursiveFPCG<dd real> after
|res|/|res 0]|: 3.661388e-58
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K In double iters. )

2 itera

{ Solved to nearly 60 digits }

Leaving recursiveFPCG<qd real> after 2 iteratioms:




Example: Problems with Generic Kernels

* Generic kernels are not always successful:
— e.g., CRS mat-vec on GPUs is typically sub-optimal

* Different sparse mat-vec kernels use different data structure.
» We want vendors/researchers to substitute their own kernels.

* One solution treats the kernel as a first-class object.
— Template param. dictating data structure and mat-vec kernel

 Another specializes a class for a unique platform, non-
intrusively, e.g., CrsMatrix< double, XK6Node >

 These mirror the solutions undertaken by many others:
— static polymorphism via #ifdefs
— runtime polymorphism, often object-oriented



Closing Comments

» What about issues reliability and resilience?
— How much can we handle via analytically robust algorithms?

» What is the proper balance of generic kernels and
architecture specific kernels?

 We are current focused on leveraging generic
programming and abstract interfaces for flexible
implementations and easy composition for larger
problems.

* The goal is to maximize programmer efficiency (both
library and app) without significant performance
sacrifices.



